Biological diversity evokes human happiness

From PHYS.ORG 

Researchers have found that more bird species in the vicinity increase the life contentment of Europeans at least as much as a comparable increase in income.

Under the current pandemic conditions, activities out in nature are a popular pastime. The beneficial effects of a diverse nature on people’s mental health have already been documented by studies on a smaller scale. Scientists of the Senckenberg Gesellschaft für Naturforschung and the University of Kiel examined for the first time whether a diverse nature also increases human well-being on a Europe-wide scale.

To this end, the researchers used the data from the “2012 European quality of Life Survey” to study the connection between the species diversity in their surroundings and the life satisfaction in more than 26,000 adults from 26 European countries. Species diversity was measured based on the diversity of avian species, as documented in the European breeding bird atlas.

“Europeans are particularly satisfied with their lives if their immediate surroundings host a high species diversity,” explains the study’s lead author, Joel Methorst, from the Senckenberg Biodiversity and Climate Research Center, the iDiv, and the Goethe University in Frankfurt, and he continues, “According to our findings, the happiest Europeans are those who can experience numerous different bird species in their daily life, or who live in near-natural surroundings that are home to many species.”

Birds are well-suited as indicators of biological diversity, since they are among the most visible elements of the animate nature—particularly in urban areas. Moreover, their song can often be heard even if the bird itself is not visible, and most birds are popular, and people like to watch them. But there is also a second aspect that affects life satisfaction: the surroundings. A particularly high number of bird species can be found in areas with a high proportion of near-natural and diverse landscapes that hold numerous greenspaces and bodies of water.

“We also examined the socio-economic data of the people that were surveyed, and, much to our surprise, we found that avian diversity is as important for their life satisfaction as is their income,” explains Prof. Katrin Böhning-Gaese, director of the Senckenberg Biodiversity and Climate Research Center. This result becomes particularly obvious when both values increase by ten percent. Fourteen additional bird species in the vicinity raise the level of life satisfaction at least as much as an extra 124 Euros per month in the household account, based on an average income of 1,237 Euro per month in Europe.

According to the study, a diverse nature, therefore, plays an important role for human well-being across Europe—even beyond its material services. At the same time, the researchers draw attention to impending health-related problems. “The Global Assessment 2019 by the World Biodiversity Council IPBES and studies of avian species in agricultural landscapes in Europe clearly show that the biological diversity is currently undergoing a dramatic decline. This poses the risk that human well-being will also suffer from an impoverished nature. Nature conservation, therefore, not only ensures our material basis of life, but it also constitutes an investment in the well-being of us all,” adds Methorst in conclusion.

Download the paper The importance of species diversity for human well-being in Europe here

Birds in the Channel Islands – an update

A little later than most years, well 2020 has had its challenges; we are pleased to update the list of the bird species recorded in the Channel Islands. As in previous years, the list has been updated to include all birds recorded across the islands up to the end of the last year, in this case 2019. So no bearded vultures yet.

Firsts and other notable records

One species, booted warbler, joined the list after sightings in both Guernsey and Alderney in September. This warbler, more at home in eastern Europe and Central Asia, was the 378th species on our list.

There were further firsts for individual islands, a pallid harrier in Guernsey and a desert wheatear in Jersey while Alderney saw its first dusky warbler, barred warbler, thrush nightingale and olive-backed pipit.

Sark saw its second ever mute swan, Jersey a second pallid harrier and Caspian tern and Alderney its second common rosefinch. Jersey’s second and Guernsey’s third glossy ibis may be the sign of things to come as this waterbird increases its range and numbers, following on from all those egrets.

A good year for some

There were some notable arrivals in the islands with common cranes seen in Jersey, Guernsey and Alderney in October although numbers varied suggesting that while the birds may have all been from one migrating flock it didn’t seem that the same individuals were moving between islands.

Another much wanted species, European nightjar, was recorded on all four of our main islands in 2019 with one staying ten days in Sark in spring. The one autumn record was, sadly, of a dead bird picked up in Jersey. Cirl bunting continues to breed in Jersey but this year bred in Guernsey too where birds were present for much of the year: a single was seen in Alderney.

Updates

Away from the birds themselves, the latest report details local birding groups and how to contact them. A pleasing addition this year is the Facebook group Sark Bird Sightings

Competition?

There’s no way birders ever become competitive, but for the record there have been 338 bird species recorded in Jersey, 331 in Guernsey, 303 in Alderney and 227 in Sark. Alderney passed the magic 300 mark with their olive-backed pipit in April.

Download the updated report A Working List of the Birds of the Channel Islands here

UK on course to miss most biodiversity targets

From The Guardian

The UK is failing on its long-term biodiversity targets and seeing “relentless” declines in wildlife, according to UK Government data that shows public sector investment in conservation falling in real terms by 33% in five years.

Out of 24 biodiversity indicators, 14 showed long-term decline, including continued deterioration of UK habitats and species of European importance, as well as a decline in priority species, according to the 2020 UK biodiversity indicators report, which gives the most comprehensive overview of the action the government is taking on the most pressing wildlife issues.

“The picture is a painfully familiar one of relentless decline in species and habitats,” said Dr Richard Benwell, chief executive of Wildlife and Countryside Link. “Unfortunately, there were no surprises in this report – I would have liked to be surprised. It’s an alarmingly familiar picture.”

A lot of the data was used in the RSPB report that found the UK government failed on 17 out of 20 UN biodiversity targets agreed in Japan in 2010. The data was also part of the 2019 State of Nature report, which found that populations of the UK’s most important wildlife had fallen by 60% in 50 years.

The report showed that in 2018/2019, government funding for UK biodiversity was 0.02% of UK gross domestic product. “One thing that jumps out is the rather worrying decline in public sector spending on biodiversity,” said Prof Richard Gregory, head of monitoring conservation science for RSPB. “With the climate and biodiversity crisis, nature-based solutions are part of what we should be doing, so it’s crazy we’re not investing in this.”

Natural England, which is sponsored by Defra, has seen its budget cut by £180m since 2008, and continued cuts are having a huge impact on the protection of habitats, conservationists warn. “It’s a real ski-slope decline in funding. Government agencies cannot act to do the really great things they want to do … They need to put money there to have real action,” said Gregory.

Generally, habitat “specialist” species do worse than generalists; farmland birds have declined by 55% since 1970 and woodland birds have declined by 29%. These declines are not just historical – numbers have continued to drop in the past five years.

The report did show some improvement in the designation of protected sites, such as an increase in sustainably managed forests and fisheries.

Conservationists say that if the new Environment Land Management programme is designed well, it could bring a significant boost to nature funding, but it is not being rolled out until 2024. The issue has been worsened by the significant financial losses many charities have faced and projects being put on hold due to the coronavirus pandemic.

“This report shows just how far we have to go,” said Green Party peer Natalie Bennett. “Not only are we running out of time to tackle the climate emergency, there is also increasingly little time left to reverse this catastrophic decline in nature and wildlife.”

Joan Edwards, director of public affairs at the Wildlife Trusts, said: “There’s a loss of woodland and farmland birds, long-term decline of pollinators, and the condition of important habitats is deteriorating. We need investment and action on the ground to put nature into recovery and we need it now.”

A Defra spokesperson said the report showed positive signs in terms of the contribution of UK forests in mitigating climate change and the increase in bat populations. “However, there remain huge ongoing pressures on the country’s biodiversity, and many of our native species are in decline, which is why we must continue to act to restore and enhance nature.”

Read the report UK Biodiversity Indicators 2020 here 

Plastic found lining UK seabird nests on a worrying scale

From The Conversation

From the packaging our food comes in to the clothes we wear, plastic is everywhere. We know that seabirds eat it and get tangled in it, but we are only just beginning to explore the impacts this has on their health and survival. This is really important, particularly in the UK and Channel Islands where many species, such as the northern gannet and Manx shearwater, breed in greater numbers than anywhere else in the world.

Many seabird species are in drastic decline. A recent report found that in the last 18 years, the UK population of European shags has fallen by 24%, kittiwakes have reduced by half and Arctic skua populations have shrunk by 70%.

But what is behind these declines remains something of a mystery. Overfishing and climate change are thought to be key drivers, but despite knowing that plastic is widespread in their environment, we currently lack even the most basic data on which seabird species are affected by this pollution and how.

Before we can effectively deal with any threat posed by plastic pollution, we need to understand the scale and type of effects it’s having. A new study is a first step towards this, uncovering evidence that Scottish seabirds are not only ingesting plastic, but they appear to be accumulating it in their nests.

Unpicking the impact of plastic

The study looked at five European seabird species – cormorants, European shags, great black-backed gulls, herring and lesser black-backed gulls. The latter four of these are of “Conservation Concern” in the UK according to the RSPB, while cormorant, shag and herring gull are included in Jersey’s ‘red list’ due to their declining or vulnerable populations.

Plastic pollution was intimately intertwined with the nesting behaviour and daily lives of these species, possibly affecting their breeding success and survival. 32% of herring gull nests, 53% of great black-backed gull nests and, worryingly, 80% of European shag nests contained plastic. Even worse, 39% of herring gull pellets – regurgitated bits of indigestible food – also contained plastic.

Plastic in nests is known to ensnare adults and chicks, often with fatal consequences. For some species, the nest must keep the egg warm and dry. It’s not clear whether plastic could be altering how well the nest warms its occupants or allows liquids to drain, but any changes could affect hatching success. Equally, the range of colours plastic comes in may affect the nest’s camouflage, making eggs and chicks more vulnerable to predators.

The study found clear differences in the type of plastic in herring gull nests from that contained in their pellets. This may reflect differences in where this species collects its food and its nest material. The ingested plastic was a variety of colours and types, including fibres, packaging and hard fragments, suggesting it might be found in an urban environment or in a landfill. But the nest plastic found was only sheet packaging, the sort more likely to wash up on the shore closer to their home.

This kind of information can help us begin to understand how effective different efforts might be. If the plastic used for making nests is collected from the shore before nest building begins in early spring, like during beach cleans, it could limit the impact on particular seabird species.

As nationwide lockdowns have eased during the COVID-19 pandemic, unprecedented levels of plastic waste have been left on UK beaches. We’re only just peeling back the surface on how this pollution harms wildlife. But as the evidence mounts, the urgent need to prevent plastic entering the environment becomes ever clearer.

The study The prevalence and source of plastic incorporated into nests of five seabird species on a small offshore island can be seen here

 

Most wild bee and native plant species networks lost over last 100 years

From EurekAlert

Climate change and an increase in disturbed bee habitats from expanding agriculture and development in north-eastern North America over the last 30 years are likely responsible for a 94% loss of plant-pollinator networks a new study has found. Despite this study being from North America it is hard to imagine that Jersey has fared very differently.

The researchers looked at plant-pollinator networks from 125 years ago through to the present day. The networks are comprised of wild bees and the native plants they historically rely on, although most of those have now been disrupted.

About 30% of plant-pollinator networks were completely lost, which translates to a disappearance of either the bees, the plants or both. In another 64% of the network loss, the wild bees, such as sweat or miner bees, or native plants, such as sumac and willow, are still present in the eco-system, but the bees no longer visit those plants. The association is gone.

The remaining 6% of the plant-pollinator networks are stable or even thriving with pollinators such as small carpenter bees, which like broken stems for nest making.

“There are several reasons for the losses in the networks. Climate change is likely the biggest driver. We know that over the last 100 years or so annual temperatures have changed by two and a half degrees. This is enough to alter the time when certain native plants bloom,” says author Professor Sandra Rehan.

“For a bee that’s out for months on end or is a generalist pollinator, this isn’t such a critical mismatch, but for a bee that’s only out for two weeks of the year and only has a few floral hosts, this could be devastating.” An increase in non-native species of bees and invasive species of plants, which have displaced some of the native species, is another reason for the decline in networks. “We are getting a lot of invasive species and new records of invasive species every year. This is usually accidentally through trade and through ornamental plants,” says Rehan.

A lot of these bees live in stems, so it’s easy to import plants with non-native bee species without knowing it. “We can actually show routes and means of invasion biology,” she says.

These bees are following shipping routes from one continent to the other around the world, including North America through ornamental plants for our gardens.

The researchers say an increase in habitat restoration and native flowering plants in agricultural landscapes are critical for improving wild bee biodiversity, but also food security for humans.

Bees and other pollinators are worth hundreds of billions of (US) dollars globally by pollinating the crops we eat, and wild bees are at the top of the list believed to pollinate more than 87% or 308,006 flowering plant species. Many of these are economically important commercial crops, such as apples and blueberries.

“There is an urgent need to gain a deeper understanding of the environmental circumstances affecting these wild pollinator populations and their specialised, evolutionary relationships with plant communities,” says Rehan. “Plant pollinator webs are dependent on changes in the landscape, so knowing how these networks are shaped is important for all regional habitats.”

Previous recent research by Rehan and team looked at 119 wild bee species over 125 years and found 14 declining and eight increasing species. All of the wild bee species in decline are native (to North America) and over half experienced significant range (latitude and elevation) shifts.

Paper Wild bee declines linked to plant-pollinator network changes and plant species introductions

 

Wall lizard – a true Jersey resident

By Nina Cornish

The common wall lizard Podarcis muralis is one of four species of reptile in Jersey with green lizard Lacerta bilineata, slow worm Anguis fragilis and grass snake Natrix helvetica. The green lizard and wall lizard are found nowhere else in the British Isles except for recently introduced populations of green lizards in Guernsey and England and around twenty separate introduced wall lizard colonies in the UK.

Wall lizards in Jersey live mainly in relatively small, fragmented populations around the east and north east coast, with some very small colonies found on the south coast. Their largest population is at Mont Orgueil Castle, St Martin.

Wall lizards are small and agile, with adults an average snout to vent length of 58.5mm but can grow up to 75 mm. They live for approximately 38 months in the wild and mate in April or May. Wall lizards are oviparous (produce young by means of eggs), with most females laying two clutches per year with an average of five eggs, typically in June and July under low growing vegetation exposed to sunshine. Adult males are the first to emerge from hibernation, generally in February, although unseasonably warm spells of weather can tempt them out in any of the winter months. The females tend to emerge later, usually in early March. In these early months the males become aggressive, chasing and fighting for territory and females.

 

Wall lizards exhibit tail autonomy, a function which allows the tail vertebrae to break by the lizard contracting it muscles in the tail. This is an important anti-predator mechanism in lacertid lizards, with tails being shed more easily in populations where levels of predation are high. In Jersey the wall lizards’ main predators are rats, certain birds like corvids and kestrels and domestic cats. The older an individual, the more likely it will have suffered the loss of its tail during its lifetime.

Wall lizard populations vary greatly in terms of colouring across their range, although males and females are do have different coloured patterns which allows identification in adults possible. Jersey female lizards can usually be identified as having pale back and side streaks, whereas males have more dark spots and blotches.  Both sexes have camouflage markings and coloration, on top of beige – olive coloured background, and with a lighter throat and belly, which can vary in colour from cream to bright orange, pink or red in males. Red throats and belly coloration are commonly observed in breeding males in Jersey.Habits

During the day, wall lizards constantly ‘shuttle’ between areas of light and shade, with the amount of time spent basking per day decreasing as the strength and duration of sunlight increases. As a result, in the early morning one can expect to see the most lizards as they emerge to bask, conversely the least at around midday when most are foraging or inactive in the shade.  Activity will then peak again in the late afternoon. Body temperature is regulated utilising this ‘shade mosaic’, i.e. the dappled light effect produced by partial vegetation cover. This means that an ideal situation in terms of vegetation cover would be partial cover in some areas, suitable for foraging and protection from predators with an adjacent area on which to bask and display social, sexual and territorial behaviour. 

 

Wall lizards spend much of the day foraging. In Jersey they feed mainly on Hemiptera (true bugs), Isopoda (woodlice), Hymenoptera (bees, ants etc), Arachneae (spiders), Dermaptera (earwigs), Orthoptera (grasshoppers), Lepidoptera larvae (caterpillars) and Annelids (earthworms). The type of prey varies between sites, not as a matter of preference, more of whatever types of invertebrates are prevalent at each location.

The story behind their distribution and origins

Wall lizards on Jersey are near the northern limit of their geographical range. The species has a wide distribution in continental Europe including France, Belgium, the Netherlands, Germany, the Czech Republic, Austria and the Balkan region, with the northernmost limit of distribution being Maastricht in the Netherlands.

As the name suggests, the wall lizard is most often seen on vertical surfaces including cliffs, rock piles and walls and are especially associated with human habitations. The Jersey populations are typical of other northern European localities in that they are mainly restricted specifically to walls of houses, gardens, fortifications and castles and are widely used provided they are south-facing and have refuges like holes, piles of debris and some form of vegetation cover nearby. Outside the foraging home range of around 15-25 m2, sightings of wall lizard rapidly decrease from the exterior of the forts that they inhabit.

The distribution of wall lizards on Jersey has never really been explained. Despite some intensive local research, no-one has been able to prove why they have such a fragmented distribution or why they have not spread over the Island despite there being large areas of suitable habitat on the north and west coasts. Jersey’s wall lizard presence and distribution was first mentioned in Ansted & Latham’s 1865 The Channel Islands. It stated that wall lizards (although first mistaken for sand lizards), were comparatively rare and were limited to certain districts in the Island. By 1907, Sinel (Notes on the Lizards of the Channel Islands) recorded wall lizards from the cliff, rocks and walls off a thin coastal belt from the east to the north-east coast of Jersey (Le Sueur, 1976). Sinel (1908: The Reptilia, Batrachia, and Mammalia of the Channel Islands, their Origin and Modification by Isolation) also mentions a very interesting historic account concerning French prisoners being held in the Napoleonic forts after the Battle of Jersey (1781) when France attempted to invade Jersey. During this period French prisoners were imprisoned in the Napoleonic forts and it was suggested that they kept wall lizards as pets. Whether these were pets they bought with them or lizards they captured while being imprisoned is uncertain. Alternatively, colonisation could have occurred subsequent to Jersey becoming isolation via rafting (lizards hitching rides on natural materials blown out to sea) or the transportation of quarried granite, between France, Chausey and Jersey.  It has been documented that lizards in Jersey were part of a wider pet trade, with lizards being sent from Jersey to England as far back as 1761. Sinel stated in 1908 that ‘The Green lizard is becoming very scarce. This is partly due to the dealers, who have set a price upon its head’. Pyecraft (1927: Jade green lizards of Jersey) wrote ‘The wall lizard, in the locality where I found it, swarmed, but wild horses will not drag from me the place of its retreat, lest a demand be created for specimens.  The consequent exploitation by dealers could exterminate it in a single summer!’ By 1947, the pet trade in lizards had reached such proportions that the States of Jersey passed the Wildlife Protection (Jersey) Law 1947, which prohibited the buying, selling, exportation or killing of all reptiles and amphibians of Jersey, as a measure to control the roaring trade for these animals as pets destined for England.

In 1976, Frances Le Sueur published the first distribution map of wall lizards (included below) demonstrating their distribution to be substantially the same distribution as recorded by Sinel in 1907. Since 1976, the wall lizard has been recorded in an additional three-kilometre squares.

In 1988, Chris Perkins (1989: The biology and conservation of the green lizard and wall lizard in Jersey) carried out an Island survey of both wall and green lizards and in 1997, Rosie Smith (2000: Census of Jersey wall lizards Podarcis muralis and ecological correlates of distribution at fort sites in Jersey) studied their distribution and ecology. In 2008 the States of Jersey carried out a public survey to determine the distribution of green and wall lizards. Both St Aubin’s Fort and some very small populations in public and private gardens along the south coast were added to their known distribution. Presence in these areas is thought to be through accidental introductions carried out sometime in the 20th Century.

Distribution map 1965-2005

The lizards fragmented distribution could be partially due to Jersey being on the extreme edge of their distribution. Jersey’s wall lizards may only be able to utilise small areas of suitable habitat due to its northern range (Strijbosch et al. 1980) or their patchy and restricted distribution on the north-eastern, eastern and south coast could have been through introduction following the construction of these forts and towers.

To determine Jersey’s wall lizards’ origins and genetic fitness, a study was carried out to investigate the phylogeography and genetic structure of peripheral populations on Jersey (Channel Islands) and the French Chausey archipelago. In 2014, mitochondrial DNA (cytochrome b gene) from 200 individuals was sequenced to infer the phylogeography of the island populations using Bayesian approaches. In addition, 484 individuals from 21 populations at 10 polymorphic microsatellite loci were genotyped to evaluate the genetic structure and diversity of island and mainland (Western France) populations.

The data provided strong evidence that the wall lizard populations on Jersey and Chausey belong to a single origin. Furthermore, the analyses suggest that this mtDNA clade was isolated from mainland Europe for a long period of time and should be considered native. The origin of the wall lizards on Jersey and Chausey Islands appears to result from increasing sea levels 7,000 BP, isolating island populations from each other, creating independent population histories and hence divergence. It remains possible, however, that there has been occasional gene flow between islands. This could explain the presence of lizards on very small islets in the Chausey archipelago which are unlikely to be large enough to sustain populations for thousands of years independently. In addition, the presence of the most common haplotype (genetic ancestor) in mainland France appeared on the island of Chausey. This might provide evidence of occasional geneflow between mainland France and the islands via retention of ancestral genetic variation or a more recent introduction.

Anecdotal evidence also suggested that human mediated dispersal might be the most likely explanation for one of the four current locations in Jersey, the population on St. Aubin Fort. Although our mtDNA data revealed a different haplotype from other Jersey populations, the nucDNA clusters all Jersey populations together. This suggests that the source population was most likely animals from other Jersey populations and that the difference in haplotype represents a founder effect (the loss of genetic variation that occurs when a new population is established by a very small number of individuals from a larger population). Overall, these results confirm the suspected native status of Jersey and Chausey wall lizards. Thus, the lower genetic diversity of island populations compared to the mainland populations is expected given the lack of gene flow. This may have significant implication for the long-term persistence of the species on Jersey and Chausey Islands. However, since our data suggests the species have been present on the islands for thousands of years it might have already been subject to a severe genetic bottleneck. The species might also have undergone a substantial reduction in abundance more recently.

As this study clarified the native status of the wall lizard population on Jersey, it validates its current full protection status sunder the Conservation of Wildlife (Jersey) Law 2000 (as amended). The law prohibits the unlicensed taking, sale, keeping, injury and destruction of places for shelter (e.g. nest, dens or burrows) and disturbance of any resident animals. Given our results, it is important that Jerseys conservation planners recognise the wall lizard’s restricted distribution, vulnerability to future inbreeding depression, susceptibility to disease, predation and the island’s ever-increasing urban development when determining species management strategies. For instance, should the granite walls and ramparts of historic fortresses where lizards are at highest abundance be developed or destroyed, the population’s continued survival could be at risk. The lizard’s long-term conservation status will depend upon increasing habitat connectivity, especially via coastline protection, connecting their north-eastern and eastern coast populations on the island.

How they are doing?

The most current population estimates were made by Perkins (1988) and Smith (1997) at specific Jersey forts and towers. Due to their protection, restricted distribution and vulnerability there is a need to monitor populations. In 2007 the National Amphibian and Reptile Recording Scheme (NARRS) was launched in Jersey by the States of Jersey Department of the Environment (now Natural Environment) as part of its integrated ecological monitoring programme. The scheme was developed by Amphibian and Reptile Conservation (ARC) and has been run in partnership with Natural Environment and Jersey Amphibian and Reptile Group (JARG) over a 12-year period (2007-2018) to assess and detect changes in the conservation status of Jersey’s native amphibians and reptiles.

In 2019 12-years of NARRS data was analysed to determine changes in occupancy and distribution of Jersey’s native amphibians and reptiles. The result of these analyses determined wall lizard are still restricted to coastal localities. The scheme was not able to determine the wall lizard’s detectability due to their restricted distribution and during the 12-year survey period their occupancy on the island decreased.  Additional data was sourced from the Jersey Biodiversity Centre which showed occupancy to have remained stable. The restricted distribution combined with uninformative detection and occupancy results indicate NARRS is not well suited to monitoring wall lizards being better for more widespread species. As a result, the agile frog, grass snake and wall lizard, being rarer and / or more restricted in their distributions, require monitoring with separate surveys. Therefore, future monitoring should (i) apply survey methods specific to the species, (ii) focus on determining species occupancy status at known and suspected sites and (iii) aim to better understand the factors driving species occupancy and detection.

In 2019 new monitoring schemes were designed for amphibian and reptiles with robust and practical data collection in mind. Reptilewatch JE was created with the aim to detect changes in the conservation status of Jersey’s reptiles, through changes in occupancy (levels 1 and 2 surveys) and detect site-level population changes (level 3 surveys). Level 2 Wall Lizard Survey was created to specifically consider Jersey’s wall lizards’ restricted distribution.

 How can you help?

We are looking to recruit ‘Wild Volunteers’ to join our Reptilewatch JE team and search for wall lizards at known and suspected wall lizard sites. Wall lizard surveyors are required to carry out six surveys, between March and October, spending 30 minutes at each site visually searching (either walking or looking from a fixed vantage point). You will need training at one of our training events, but no previous experience is needed. Please contact wildaboutJersey@gov.je  or go to the Jersey Amphibian Reptile Group (JARG) Reptilewatch JE webpage for more information. There are opportunities for everyone to get involved, with three levels of surveys depending on your interest, available time and experience.

Download the report Phylogeography and conservation genetics of the common wall lizard, Podarcis muralis, on islands at its northern range here 

JBatS 2020 training and surveys

From WildAboutJersey 

The dates have been set for the 2020 training sessions and survey period!

The Jersey Bat Survey 2020 (JBats) is a pilot study for an island-wide citizen science scheme.  Each volunteer will get a detector to record bat echolocation calls throughout the survey period. Using the latest automated call recognition systems, data is extracted from these recordings which provides information towards the long-term monitoring of bats in Jersey.  This scheme is still in a pilot phase as we develop the scheme and links with the British Bat survey.

JBatS 2020 survey period: 1st -31st July

JBatS Training: Tuesday 23rd June 7pm

This year training will take place in your own home via Zoom !!

We will be providing some background to the project and an update on the progress we’ve made so far. We’ll also let you know how you can be involved with the 2020 fieldwork should you be interested. Even if you participated in the 2019 JBats surveys, we encourage you to join the training session. 

This year we can’t get together for a more traditional training event and practical field session but there will be a chance for volunteers to familiarise themselves with the equipment when they collect their kit pack. We will be arranging kit collections that meet Covid-19 guidance and physical distancing measures. So if you can’t make the training session online but would still like to get involved please do let us know. 

In 2020, the survey period is the month of July. We are asking volunteers to deploy an audiomoth detector at three different locations during the survey period. Deploying the detectors is quick and easy to do, and provides a great chance to explore the island!   

This year we are collaborating with the Bat Conservation Trust’s BBats project. The BCT BBats project will process a sample of the data we record this season to test a new system of providing feedback to volunteers. 

If you are interested please contact WildAboutJersey on wildaboutjersey@gov.je  You will receive a follow up email with more details of the event.

Jersey Great Garden Bat Watch coming to a garden near you 6-7th June

Pipistrellus nathusii photo taken under licence by Miranda Collett Saturday 6th and Sunday 7th June, 20:55 until 22:00

From Jersey Bat Group

Please join the Jersey Bat Group for the second Great Garden Bat Watch!

This event combines the joy of (hopefully!) watching bats with citizen science-based research that can help us better understand bats across Jersey.

The Group are particularly keen to receive sightings of bats from St Helier and other urban areas around the Island to help with their research into Jersey’s urban bat populations.

We are asking if you could look for bats on the 6th and 7th June, but please do feel free to use the form (below) to submit your bat sightings throughout the summer.

However: if you are submitting sightings on dates other than 6th and 7th June then, to get the right timings, please go to sunset times here and ensure that you are outside looking for bats at least 15 minutes before sunset. That way you will ensure you spot the first bats…though it may mean you wait up to 30 minutes before seeing your first one.

Les Augres Manor, a good place to spot bats. Photo by Glyn Young

The Great Garden Bat Watch

We are asking you to go into your garden, or to an open space near your house or really anywhere in the Island to look for bats.

We ask that you do this whilst maintaining social distancing and by following any other requirements of the Government of Jersey’s safe exit framework.

  • Main event: Saturday 6th or Sunday 7th June (or both!)
  • Where: Any outside space (garden, park, lane, beach)
  • What time: From 20:55 until 22.00

You do not need a bat detector as we are not asking you to identify bat species, all you need to note down is:

  • The time you saw the first bat
  • The direction the bat flew from
  • Details of the recorder, date and location

Great Garden Bat Watch data entry form

We are working in conjunction with the Jersey Biodiversity Centre who have designed a bespoke data entry form for you to enter your sightings –  through the form here.

If you manage to take any photos or videos of bats in flight during the Great Garden Bat Watch then please post them in the comments box for this event on the Jersey Bat Group Facebook page or email them to the Jersey Bat Group

We look forward to receiving news of your local bats!

For any further details about the bat watch or to submit your data by email then please email the Jersey Bat Group

Happy bat watching!

Myotis nattereri photo taken under licence by Amy Hall

Jersey’s birdwatching and bird photography code of conduct updated

By Romano da Costa and Glyn Young

Many bird species in Jersey are endangered locally or globally. Their survival depends on their chances to feed and breed safely. Birdwatching and bird photography may cause disturbance to birds, and, in certain circumstances, this disturbance might cause them harm or even death. The following is a simple good practice code of conduct that puts the interest of birds first and offers simple advice on how to enjoy birdwatching and bird photography whilst minimising the disturbance to the birds or their habitats:

  1. Avoid getting too close to birds, if a bird flies away you’re too close! Do not be tempted to keep chasing the bird (some birds will freeze when approached). If a bird is making repeated alarm calls you are also too close
  2. Stay on roads, footpaths or in bird hides to avoid going too close to birds or walking through their habitats. Disturbing habitats is just as bad as disturbing the bird itself
  3. Think about your fieldcraft. Disturbance is not just about going too close – a flock of wading birds on the foreshore can be disturbed from a distance if you stand on the seawall or walk directly towards them while a bird of prey on a kill will abandon it if you get too close!
  4. DO NOT use playback or birdsong recordings to lure out hidden birds or to make them sing at any time of year. Provoking this behaviour may cause unnecessary stress to the bird, make it waste vital energy, keep it from feeding its mate or young, and put it at increased risk from predators. You may also be breaking the Law
  5. DO NOT use flash when photographing birds at night. This might distract the birds or daze them, making them more vulnerable to predators
  6. Know the law: Disturbing a wild bird feeding, roosting or at its nest or nesting area is an offence under the Conservation of Wildlife (Jersey) Law 2000
  7. Make your sightings count: Report your observations in the records book at the hides or
  8. If you witness anyone who you suspect may be illegally disturbing or destroying wildlife or its habitat, phone the Police on 01534 612612 or the Department of the Environment on 01534 441600.

A copy of the code can be downloaded here

Jersey’s cirl buntings in spring 2020

 
When cirl buntings returned to Jersey after an 8-year absence in 2011, we waited anxiously to see whether they could fully recolonise (see update). We knew that there was adequate nesting habitat available, not least as their hosts, Royal Jersey Golf Club, were happy to help them. The limiting factor seemed to be the availability of adequate food in the winter when the buntings live out in the fields. We sought advice, not least from the RSPB’s Cath Jeffs, developed a plan for the buntings and it was suggested that we provide grain for them in winter and have done this each year (many thanks to Richard Perchard), the buntings quickly learning to use the special feeders. 
 
 
So, how are our buntings doing now? A good walk around the golf-less golf course by Mick Dryden on 3rd May found buntings at six sites. Our recording of the sites is easy as golf clubs, unsurprisingly, number and map their course. However, while the buntings’ presence on the course is widely known, to avoid disturbance we have removed those numbers and replaced with sites (below). Please respect the Royal Jersey Golf Club’s course, the neighbours and, of course, these rare birds who’s foothold in the Channel Islands is still very vulnerable. Here are Mick’s findings: 
  • Site 1. A pair of cirls at the northern end of the gorse, on the road side both feeding together (female above and male at bottom of page)
  • Site 2. A pair at the usual area, both feeding together
  • Site 3. A second male in the large trees, close to the Site 2, singing strongly and flying out to the centre of the course to sing again
  • Site 4. A third pair together on their usual area
  • Site 5 A fourth pair together in the tree. These flew down to the cut down area
  • Site 6. A male singing strongly and holding territory. I didn’t see a female with this one.
So, four pairs plus two additional males = 10 birds. This is at the start of the breeding season and Mick’s survey in 2016 found 17 birds including eight young from three pairs in July, after they’d bred that year.  So, 10 years on from their return, our cirl buntings are still here and, while still vulnerable, they are definitely hanging on.